Name: \qquad Period: \qquad Date: \qquad

Lesson 6: How does a bacteria population grow in a simulated environment?

Investigation 1: How does the size of a bacterial population change over time?

Predict. If four individual bacteria were introduced into a Petri dish, and no antibiotics were introduced, make a prediction showing what you think would happen to the total number of bacteria in that patient over time in the space below.

Procedure for Investigation 1: In this next investigation, you will start the model with different numbers bacteria. To start with you will start with 4 total bacteria, each one will be a different color. But each bacteria will reproduce at the same rate.

1. Go to http://infection.inquiry-hub.net
2. Set these sliders all to 1 .

3. Press the SETUP/RESET button to initialize the model.
4. Then press GO/PAUSE button to run the model.

go/pause

5. Use your mouse cursor to drag and drop the bacteria to equally space them out. The image to the right shows how to distribute the bacteria \qquad ->

6. Next, click the checkmark box in the REPRODUCE? switch to turn it on:
\checkmark reproduce?
7. The size of the population will start growing. When the population stops growing, press the GO/PAUSE button to pause the model.
8. Sketch the shape of the graph for each of the variations of bacteria in the space for the graph below.
9. Record the size of the population at the end of the simulation and the number of each variation of bacteria in the simulation at this point in the table below. Calculate the percentage of bacteria with each type of variation that are in the population as well.

Observations

total \# of bacteria		
0		
0	time (min.)	1000

Variation	At the start of the simulation		At the end of the simulation								
color visualization for this variation	\# of bacteria	The \% of the population that is made up of this variation	\# of bacteria	The \% of the population that is made up of							
this variation					$	$	purple	1	25%		
:---:	:---:	:---:	:---:	:---:							
green	1	25%									
brown	1	25%									
red	1	25%	100%								
Total bacteria	4										

Making Sense

Q1. What caused the graph of total number of bacteria to end up having the shape it did?
\qquad
\qquad
\qquad
\qquad

Q2. How did your results compare to other group members?

Q3. What do you think caused the proportion of the bacteria with each variation to remain relatively stable (close to 25% of the population)?
\qquad
\qquad
\qquad
\qquad

Investigation 2: How Does the Initial Placement of Bacteria in a Petri Dish Affect Their Growth?

Predict Q4. You observed bacteria reproduce (divide) in the simulation, forming two separate new bacteria from one old bacteria.

If a green bacterium, how many new cells will it form? \qquad
What will the color of each new cell be? \qquad
The graph below shows the distribution of trait variations in the population to start with (1 out of 4 bacteria of each variation

Q5. If you ran the simulation again, but let each one of these four bacteria start in random location, how do you think the proportion of each of these variations of bacteria at the end of the simulation will compare. Will they each remain close to 25\%? Why?
\qquad
\qquad

Procedure for Investigation 2

10. Set all of these sliders to 1 .

11. Press the SETUP/RESET button to initialize the model.
12. Then press GO/PAUSE button to run the model.

go/pause

13. Turn the REPRODUCE? switch on:

14. The size of the population will start growing. When the population stops growing, press the GO/PAUSE button to pause the model.
15. Record the size of the population at the end of the simulation and the number of each variation of bacteria in the simulation at this point in the table on the next page. Calculate the percentage of bacteria with each type of variation that are in the population as well.

Observations

Variation	At the start of the simulation		At the end of the simulation	
Color visualization for this variation	\# of bacteria	the \% of the population that is made up of this variation	\# of bacteria	the \% of the population that is made up of this variation
purple	1	25%		
green	1	25%		
brown	1	25%		
red	1	25%	100%	
Total bacteria	4			

Making Sense

Q6. How did your results compare to other group members? Fill in the four bar graphs below to representing the results of each of your group members.

Q7. Why is there more variation in the distribution of trait variations in the final populations between your group members than there was in the first investigation?
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions

Q8. In the simulation:

- Every bacteria reproduces at the same rate if it has unoccupied space next to it.
- If there is more than one space next to a bacteria available, then the space it reproduces will be randomly selected.
- Bacteria only reproduce bacteria that have identical variations in pores/color as the parent cell that they descended from.

What did your class decide is causing some variations of bacteria to outcompete other variations of bacteria from one simulation run to the next?

Connections

Q9. Would you expect the bacteria that are growing in the petri dishes in your classroom to follow a similar pattern of growth? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

