Infographics in the Classroom: Using Data Visualization to Engage in Scientific Practices

Activity 1: Data Graphic Interpretation

1. Use David MacCandless's Peak Breakup Times blank infographic (Figure 1) to have a fun introduction to infographics. Share this using the "Activity 1 Presentation" power point slides (download the slides at www.calacademy.org/infographics-in-the-classroom-teacher-toolkit. PDF versions of the slides are also included in this packet). After students try to guess what the blank graphic is showing, reveal what it is and some of the "explanations" MacCandless offers. We modeled this after his TED talk: http://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization?lang uage=en.
2. Briefly discuss with students why they think scientists would visualize their data.
3. Hand out a few graphics to analyze (Figures 2-8) and Worksheet 1. Give them 10 minutes to answer the questions on their own.
4. Have students find people who did the same graphic (if you have a large class, you may want to break them into smaller groups) and share out within their group what they think the graphic is about. You can also have them complete the worksheet together.
5. Working as a group, make a poster to share what you noticed in the graphic: 1-2 sentences describing the central ideas; what numbers/data are represented and how are they represented; what do you like/dislike about the way the author presents his/her story?
6. Give the students a chance to share out their ideas as a group.
7. Make new groups of 3-5 people who did different graphics. Share what the main story was and how the author visualized the numbers. The goal of this discussion is to come up with a list of all the different ways you can visualize/represent numbers. Have them write each one on a post-it. When they are done have each group bring up the post-its and start sorting them by similar ideas
8. Wrap up this section by summarizing the different post-it ideas. Pass out the Academy's list of ways to visualize data. Have a quick read over them - what is similar/different between them.

Infographics used for this lesson:

- David MacCandless, 20 ${ }^{\text {th }}$ Century Deaths, from his book, Visual Miscellaneum. There is a more complicated version here:
http://www.informationisbeautiful.net/visualizations/20th-century-death/
- New York Times, One race, every medalist ever, http://www.nytimes.com/interactive/2012/08/05/sports/olympics/the-100-meter-dash-one-race-every-medalist-ever.html?_r=0
- Big Oak Studios, Inc, Diving the Depths Infographic http://visual.Iy/diving-depthsinfographic
- David MacCandless, $20^{\text {th }}$ Century Deaths, from his book, Visual Miscellaneum\}
- Craig Robinson, The Rise and Fall of Scoring in Baseball, Smithsonian Magazine, http://www.smithsonianmag.com/history/infographic-the-rise-and-fall-of-scoring-in-baseball-170927844
- Ocean Conservancy, International Costal Cleanup 25 years of Debris Collected, http://media-cacheec4.pinimg.com/550x/7d/35/82/7d358209a4be18d0db69af13ef75ce78.jpg

Activity 1
 Data Graphic Interpretation

Name \qquad
Title of
Date \qquad Graphic \qquad

1. What ideas or pieces of information does the author present? List as many as you can.
2. Identify main conclusion told in the graphic. This should not just be the title, but what conclusion you can make from the information provided.
3. Pick one point on the image that represents a number. What is that number (you can approximate, if necessary) and what are the units? If known, what is the source of the data?
4. Describe how the author represents data in the graphic? (Ex. Using color to differentiate two things.)
"
"
"
"
5. What other ways does the author tell the audience about the key message(s)?
6. What questions do you have about the graphic? What confuses you?
7. What do you like/dislike about the graphic?

http://www.nytimes.com/interactive/2012/08/05/sports/olympics/the-100-meter-dash-one-race-every-medalist-ever.html

แO乛‘UEIUOSLIIUS

woכ＇uosu！qo．в！е．м＇MMM uosuiqoy
Hつぬ $\forall \exists$ Sヨy 8 NDISヨO

 SヨวyกOS

－पоо～

IIOZ－IL8I

How do Scientists Communicate?

Scientists often use visual
representations of their data to tell
stories about their research

